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On the role of entropy conservation and entropy
loss governing substorm phases

J. Birn, M. Hesse, and K. Schindler

Abstract: MHD theory and simulations have shed light on the role of entropy conservation and loss during the course
of a substorm. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current
sheets in the late substorm growth phase, causing the onset of an instability or a catastrophe (loss of equilibrium). Entropy
loss (in the form of plasmoids) is essential in the earthwardtransport of flux tubes (bubbles, bursty bulk flows). Entropy
loss may also change the tail stability properties and render ballooning modes unstable and thus contribute to cross-tail
variability. We illustrate these effects through results from theory and simulations. We also verify that the entropy
conservation as used in MHD remains a valid concept in particle simulations.
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1. Introduction

The large-scale dynamic evolution of the magnetosphere, in-
cluding the substorm growth phase and the substorm expan-
sion phase, is usually modeled by the one-fluid magnetohydro-
dynamic (MHD) equations. Major assumptions used in the de-
rivation of the MHD equations from the more general frame-
work of collisional or collisionless Vlasov/Boltzmann equa-
tions are (a) the neglect of the electric field in the plasma rest
frame (ideal MHD),

E + v × B = 0 (1)

(b) the assumption of isotropic plasma pressurep, and (c) the
neglect of heat flux or, more narrowly, the divergence of the
heat flux tensor. Here heat flux represents the third order mo-
ment of the particle distribution function, representing thermal
energy transport in the plasma rest frame. This leads to the
adiabatic, i.e., entropy conserving, law of state, which may be
written as

d

dt

p

ργ
= 0 (2)

whered/dt ≡ ∂/∂t+v·∇ is the time derivative in a comoving
frame. Hereγ = 5/3 is appropriate for an isotropic plasma
distribution function (taken in the plasma rest frame), which
also implies the absence of heat flux.

Although the details of substorm onset in the magnetotail
are still a matter of debate, there is no doubt that magnetic
reconnection, and plasmoid formation and ejection, play a cru-
cial role in the expansive phase of substorms. This requiresa
local violation of the ideal MHD constraint (1) associated with
a dissipative electric field

E′ = E + v × B 6= 0 (3)
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In MHD simulations this is usually accomplished by some ad-
hoc model of resistivity (or by numerical diffusion). In col-
lisionless models appropriate for the magnetotail, resistivity
from binary collisions does not play any role. Many of the in-
vestigations of magnetic reconnection in the magnetotail there-
fore have focused on the break-down of (1) and the properties
of the dissipative electric field resulting particularly from elec-
tron inertia effects [14, 9, 11, 8, 13].

However, the entropy conservation (2) and its break-down
also have important implications for the evolution of the mag-
netotail, the accessibility of certain states, and the stability of
the tail. This is the topic of the present paper. In Sec. 2 we
present results from quasi-static theory and MHD simulations
that demonstrate the potential role of entropy conservation in
the growth phase of substorms in governing thin current sheet
formation and the loss of equilibrium. As discussed in Sec. 3,
the subsequent loss of entropy by the severance of a plasmoid
results in a ballooning unstable configuration. The entropyloss
enables depleted flux tubes to penetrate close to the earth, while
ballooning instability may provide cross-tail structure and fila-
mentation. These results rely on the entropy conservation (2),
which is imposed in the MHD model. However, as demon-
strated in Sec. 4 from a comparison between an MHD sim-
ulation and a full particle simulation, the integral of entropy
on moving flux tubes is well conserved in particle simulations
as well, providing credence to the results of the MHD simula-
tions.

2. Substorm growth phase: Thin current sheet
formation, loss of equilibrium

In this section we discuss the possible role of entropy con-
servation during the substorm growth phase. Recently Birn and
Schindler [3] investigated the quasi-static response of the mag-
netotail to a deformation of the magnetopause boundary, af-
fecting particularly the inner tail. Using two-dimensional mag-
netohydrostatic (MHS) equilibium theory, together with flux,
entropy, and topology conservation (equivalent to ideal MHD
for slow, quasi-static, evolution), they demonstrated that a fi-
nite boundary deformation of magnetotail equilibria can lead
to strong local current density enhancement, that is, the form-
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Fig. 1. (a) Maximum current density as function of the amplitude
of the boundary indentation; (b) pressure as function of theflux
variableA for the unperturbed state (dotted line), the theoretical
limit obtained from quasi-static theory (dashed), and froman
MHD simulation (solid line). Modified after [4]; (c) magnetic
field configuration near the critical limit, consisting of a thin
embedded current sheet (gray scale) that bifurcates towardthe
Earth (left).

ation of a thin current sheet. Equilibrium configurations that
satisfy the constraints cease to exist when the boundary de-
formation exceeds a critical value.

Figure 1 illustrates this result. Panel (a) shows the maximum
current density in the tail as a function of the amplitude of
the boundary indentationa, which diverges at a finite value
of a. Panel (b) shows the pressureP as a function of the mag-
netic flux variableA, where the magnetic field is given byB =
∇A × ŷ. The dotted line corresponds to the unperturbed state
and the dashed line to the critical state, whereJ = dP/dA be-
comes locally infinite. The solid line represents the resultof an
MHD simulation, where the critical state is obtained by a slow
temporal evolution resulting from a temporal inflow through
the boundary, which causes a similar deformation as in the
quasi-static model [4]. Panel (c) illustrates the configuration
near the critical state, showing an enlarged inner portion of the
tail. A thin sheet with strongly enhanced current density (gray
scale) becomes embedded in the plasma sheet. This sheet bi-
furcates into two sheets toward the Earth (to the left in Fig.1).
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Fig. 2. MHD simulation of thin current sheet formation and
plasmoid ejection in the tail, resulting from boundary deformation
in the near tail. The gray scale indicates the current density.

3. Expansion phase: Role of reconnection,
propagation of bubbles

The results of Sec. 2 showed the strong coupling between
boundary perturbations, resulting from the impact of the solar
wind, and current density intensification within a thin sheet
forming within the plasma sheet. It is plausible that this leads
to the onset of instability or the loss of equilibrium, regard-
less of the dissipation mechanism. In the presence of dissip-
ation the strong current density enhancement is expected to
cause reconnection. We simulated this by imposing finite, uni-
form, resistivity. As demonstrated by Fig. 2, this indeed leads
to reconnection in the near tail and the formation and ejection
of a plasmoid. Similar results can also be obtained from full
particle simulations, where dissipation results from electron in-
ertia causing nongyrotropy of the electron pressure tensor[7].

The plasmoid formation has a further consequence for closed
field lines, connected with earth at both ends. Because partsof
these field lines are severed, the remaining closed section be-
comes shorter and its total entropy content reduced. This is
demonstrated in Fig. 3, showing the integrated quantityS(A)
defined by

S =

∫
p1/γdV =

∫
p1/γ ds

B
(4)

whereA is again the flux variable in the two-dimensional mag-
netic field, integrated at various times along field lines cross-
ing the near-Earth boundaryx = 0. A is normalized to 0 at
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Fig. 3. Entropy function for the MHD simulation of Fig. 2 at
various times indicated in the legend.
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Fig. 4. Entropy function for a depleted flux tube (bubble).

x = 0, z = 0 and increases outward. The sharp decrease of the
initial S(A) (dotted line) nearA = 0.7 marks the transition
from closed to open field lines, which cross the far boundary
x = 32, rather than the equatorial planez = 0. In the ab-
sence of dissipation, that is, for vanishing resistivity, this func-
tion should be conserved. As a result of reconnection, however,
S(A) becomes reduced for field lines that are affected by re-
connection. The sharp increase ofS(A) (nearA = 0.5 for
t = 50) marks the location of reconnection; it moves to higher
A values, and from closed to open field lines, as time proceeds.
Below this value the functionsS(A) show a deep minimum but
remain essentially identical for the part that has undergone re-
connection, that is, left of the steep jump. This shows that there
is little further dissipation.
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Fig. 5. Maximum earthward flow speed as function of time for
bubbles withym = 0.2 and (a) pressure reduction but no initial
velocity (solid line), (b) pressure reduction and initial velocity
(dotted line), (c) no pressure reduction but finite initial velocity
(dashed line). After [1].
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Fig. 6. Evolution of a entropy-depleted flux tube (bubble). The
gray scale shows the earthward flow speed and the contours the
boundary of the region of reduced entropy density in thex, z

plane.)

As shown by [12], the nonmonotonic variation of the en-
tropy function, resulting from the plasmoid loss, also changes
the stability properties of the configuration and, specifically,
the depleted flux tubes, which are often denoted a plasma “bub-
ble” [10, 6]. The non-monotonic variation of the entropyleads
to ballooning or interchange instability. Using three-dimen-
sional magnetohydrodynamic simulations, Birn et al. [1] in-
vestigated the propagation of low-entropy bubbles in the mag-
netotail. To distinguish the role of the entropy depletion versus
acceleration by reconnection, they studied the evolution of a
closed magnetic flux tube with artificially reduced pressure
(and thus entropy density). The initial entropy variation is shown
in Fig. 4 and is qualitatively the same as in Fig. 3, resulting
from reconnection. Birn et al. found that the depletion was
crucial in permitting the earthward propagation of the bubble,
reaching speeds of the order of 200-400 km/s, depending on
the initial amount of depletion and the cross-tail extent ofa
bubble. Fig. 5 illustrates this result by a comparison of three
simulations, one starting with a depleted flux tube (solid line),
one with additional added initial earthward momentum (dot-
ted line), and one with initial momentum but without depletion
(dashed line). Obviously, simple acceleration without deple-
tion does not lead to significant earthward propagation, whereas
the two depleted flux tubes, after some initial phase, show sim-
ilar evolution and propagation toward Earth. This result can be
considered as the consequence of interchange instability,ori-
ginally postulated by [10].

The instability of the depleted flux tube configuration against
ballooning also leads to structuring of the depleted regionin
the cross-tail direction. This is demonstrated by Figs. 6 and 7,
which show the earthward flow speed (gray scale) associated
with the bubble at two different times in thex, z plane and the
x, y plane, respectively. The top section shows the earthward
propagation, confined within the depleted flux tube. The plots
in the equatorial plane (bottom two panels), however, demon-
strate that the bubble, which originally consists of a single con-
nected flux tube, breaks apart into several pieces of flux tubes.
This is the result of ballooning modes with a wave structure in
the cross-tail direction.
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Fig. 7. Evolution of a entropy-depleted flux tube (bubble). The
gray scale shows the earthward flow speed and the contours the
boundary of the region of reduced entropy density in thex, y

plane.)

4. Validity: Comparison between MHD and
kinetic simulations

The results discussed in sections 2 and 3 are based on the en-
tropy conservation (2), which is imposed in the MHD model.
In a full kinetic model, this approximation may break down
through the development of anisotropy and effects of heat con-
duction, in addition to reconnection. We have therefore invest-
igated the conservation of entropy in a comparison of a particle
simulation of magnetic reconnection with an MHD simulation
[2]. This study was motivated by a recent comparative study of
forced magnetic reconnection with various particle and fluid
codes, named the “Newton challenge.” In these simulations,
the formation of a thin current sheet and magnetic reconnection
are initiated in a plane Harris-type current sheet by temporally
limited, spatially varying, inflow of magnetic flux (from top
and bottom in Fig. 8). All simulations resulted in surprisingly
similar final configurations [5] with a concentration of the cur-
rent in rings around the center of the magnetic islands, as il-
lustrated in Fig. 8. This suggested that entropy conservation
operated similarly in fluid and particle codes despite the fact
that kinetic approaches include anisotropy, a different dissipa-
tion mechanism, and different waves not included in MHD.

Specifically we investigated again the integral entropy meas-
ure S(A), defined by Eq. (4), using a gauge in whichA is
frozen in the plasma outside the reconnection region. In the
absence of dissipation and for vanishing heat flux (or, more
generally, vanishing divergence of heat flux)S(A) should be a
conserved function. This function was evaluated for both a PIC
simulation and an MHD simulation with localized resistivity
given by

η = η1/ cosh2 s s2 = (x/dx)2 + (z/dz)
2 (5)

choosingdx = dz = 1 andη1 = 0.01. Magnetic flux val-
uesA were derived from integratingBx = −∂A/∂z along the
boundaryx = 16. We note that, without dissipation, the flux
values at the corners of the simulation box and, for symmetry
reasons, atx = ±16, z = 0 should be conserved. We nor-
malizedA to vanish atx = ±16, z = 0, that is, at the o-type
magnetic neutral points in the center of the evolving magnetic
islands, where the plasma stays at rest.
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Fig. 8. Late magnetic field configuration and current density
(gray scale) for an MHD (top) and a PIC simulation (bottom) of
the Newton challenge problem [5, 2]. The outermost field lines
are the ones that originally formed the boundariesz = ±8.To
show the deformation more clearly, field lines outside of these are
omitted.

With this gauge, the flux values should be frozen in the
plasma fluid within the ideal MHD regime, that is, prior to and
after reconnection. However, it makes sense also to compare
the entropy before and after reconnection, because of the sym-
metry of the configuration and the fact that the entropy measure
defined by (4) is an additive quantity. Thus we can compare the
entropy measureS of a section of a field line that extends from
thez axis to the boundary before reconnection with the corres-
ponding field line that extends from thex axis to the boundary
after reconnection.

Figure 9 (top) shows the entropy function (4) obtained in this
way as function of the magnetic flux variable for both MHD
and PIC simulations at the late stages of the simulations to-
gether with the initial distribution (dotted line). The bottom
part of Figure 9 shows the corresponding pressure variations,
also averaged over the field lines. For the PIC simulation the
pressurep is defined by the trace of the full pressure tensor,
given by

p =
1

3
p‖ +

2

3
p⊥ (6)

For an indication of the anisotropy in the PIC simulation, the
parallel and perpendicular components of the pressure tensor
are shown as well as functions ofA, again averaged over field
lines.

The entropy functions in Figure 9 (top) show remarkable
agreement with each other and with the initial distribution, des-
pite the fact that most field lines at the late times have under-
gone reconnection. This demonstrates that the Joule dissipa-
tion at the reconnection site leads only to a minimal increase in
the total entropy on a field line. In contrast, the pressure func-
tions P (A) have change drastically from the initial distribu-
tion but agree closely between MHD and PIC simulations. The
small difference is largely due to the fact that the PIC simula-
tion has evolved slightly more than the MHD simulation. The
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Fig. 9. Entropy (top) and pressure (bottom) as functions of
the magnetic flux variableA for MHD (dashed line) and PIC
simulations (solid line) of the Newton challenge problem
[5]. Also shown are the parallel and perpendicular pressure
components for the PIC simulation.

PIC simulation shows some anisotropy, particularly at values
of A close to 0, which corresponds to the center of the mag-
netic islands.

The (approximate) entropy conservation through the recon-
nection process is a particular property that results from the
symmetry of the Newton challenge problem with the x-point
located at the center of the symmetrical box. This has the con-
sequence that at the reconnection site a field line is split into
two halves, which are then reconnected with symmetrical two
halves, so that, in the absence of significant dissipation, the
total entropy remains the same. In more general configurations
without symmetry, such as the tail configuration of Fig. 2, only
the sum of the entropies of the affected field lines would be
conserved. That is, the entropy loss from a shortened recon-
nected field line corresponds to the entropy of the severed part
contained within the plasmoid.

5. Summary and Discussion

We have discussed how entropy conservation and the loss
of entropy might affect various substorm phases, includingthe
growth phase, onset, and the expansion phase, in the magneto-
tail. Results from quasi-static theory and MHD simulations
demonstrated how entropy conservation, together with flux and
topology conservation in the growth phase of substorms gov-
erns thin current sheet formation and the loss of equilibrium.
The strong current density intensification, which occurs when
the critical state is approached, suggests the onset of instability
or a catastrophe, that is, loss of equilibrium, regardless of the
dissipation mechanism. This eventually leads to the onset of

reconnection and plasmoid formation and ejection.
The subsequent loss of entropy by the severance of a plas-

moid results in a ballooning or interchange unstable config-
uration. The loss of entropy is essential in enabling depleted
closed flux tubes (bubbles) to penetrate to the inner magneto-
sphere closer to Earth, as suggested by [10]. Ballooning in-
stability may also be responsible for providing cross-tailstruc-
ture and filamentation of bubbles, which may be closely asso-
ciated with localized fast flow bursts in the tail.

These results rely on the entropy conservation (2), which is
imposed in the MHD model. However, as demonstrated by the
comparison between an MHD simulation and a full particle
simulation, the integral of entropy on moving flux tubes is
well conserved in particle simulations as in MHD simulations,
providing credence to the results of the MHD simulations. The
(approximate) conservation of entropy, even through the recon-
nection process, is a consequence of the strong localization of
Joule dissipation (given byj ·E′, whereE′ = E+v×B) and
of the lack of significant heat flux across the field.
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