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Automatic classification of auroral images in
substorm studies

M. T. Syrjasuo, E. F. Donovan, X. Qin, and Y.-H. Yang

Abstract: Millions of auroral images are captured every year by gtbbased imagers. Even though the auroral
appearance or “type” yields relevant information aboutghgsical processes in the ionosphere and the magnetosphere
qualitative descriptions of auroras are typically useddbtom methods including those widely used in computer vision
research can, however, make it possible to use objectivayaadtitative measures in analysing auroral appearancearg/e
currently developing techniques for automated aurorafenanalysis. In order to numerically compare auroral object

we can either describe individual auroral shapes — suchas-aror use statistical appearance models (texture). We
demonstrate how one can use Fourier Descriptors to compapes extracted from auroral images. Also, using a recently
developed texture analysis technique, we show how text@&sorements can be used in classifying auroral type in a
timeseries.
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1. Introduction rora was learned from 258 manually labelled example images,

: . L after which the computer could provide a classification to al

Imaging the aurora by using ground-based optical instru- o

ments has long traditions in substorm research. The spectra{emammg Images. g

temporal and spatial resolution have been increaising awd n While we chose to use a three d-'Stht aurorall types (arcs,

we are facing a problem of data: large imaging netwc;rks suc atchy aurora and Omega-bands) in [11], there S, o_f LCourse,

as MIRACLE [10] and NORSTAI.? [3] produce millions of all- ore variation in auroral types. In fact, the automafucs]fm

sky images annually. The situation will become worse with th couldlonly provide a clear category fqr 12% of the images that

launch of Time Histo.ry of Events and Macroscale Interaction conta!ned auroras. Al_so, the detection of Omega-bands was
quite inaccurate, possibly because contrary to arcs amthypat

during Substorms (THEMIS) programme, which will produce 5, 1a< "we had a small number of examples for training the
over 100 million images every year. classifier

The traditional data analysis in substorm studies useactu There clearly is a need for more accurate mathematicat treat

measurements of physical properties (e.g. solar wind speeg .+ o 2 roral image contents. We can use example images
electron density). Also, derived quantities are commoBsltl ¢ "y -ining a classifier to recognise certain types of aasor
in order to understand the plasma processes in the magnetg

sphere and the ionosphere. Regardless of this quantiiative ut obviously learning the type categories from actual data

formation. the auroral image data are studied by usin ali would provide more objective type definitions. In the rest of
. ! " 9 » “y g gt this paper, we concentrate on describing the shape of an au-
ive descriptors such as “bright auroral arcs” or “patchyoaait.

Undoubtedlv the “tvpe” of the aurora vields relevant inferm roral object by using mathematical methods and demonstrate
. y YPE . Y "M the use of texture measures for classication of auroralésiag
ation about the physics. More importantly, a self-consiste

global model should be able to predict this auroral typeenth
wise our understanding, upon which the model is based, is ngt, Shape analysis
accurate.

Computer vision is a branch of computer science in which EXtracting shapes is one of the most intensively studied-pro
techniques for automated image analysis and processing ams in computer vision. Of course, there is no algorithnt tha
studied and developed. Automating the analysis makes it po&/orks well for all applications. For our purposes, we haweds
sible to browse through vast image sets, extract informatio @ modified version of the isolabel-contour map algorithnmro
and learn and recognise patterns. In [11], we used automaté@edical imaging [9]. The algorithm consists of four steps: 1
processing to obtain diurnal auroral occurrence stasistithile ~ €xtract contours; 2) detect strongest edges; 3) scoreidhail/
the actual results were not new, the analysis was: thetitatis contours based on their overlap on edges; 4) choose non-over
were based on 350,000 auroral images, from which an autd@Pping contours with the highest scores. An example of de-
mated routine extracted information about whether an imagected auroral shapes can be seen in Fig. 1 and selection of

contained aurora and if so what was its type. The type of aueXtracted shapes is shown in Fig. 2. Details and practical ap
plications of this algorithm can be found in [12, 13].

Once an auroral object is outlined, we can form a mathem-
atical expression for the shape. Lgtandy; be the pixel co-
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Fig. 1. Two salient auroral objects detected and outlined by the =~ __, e T B = € &j/ o == g
shape extraction algorithm. —_ @y % = f%% F% o
where (.,y.) is the centroid of the shape. The Fourier coeffi- T = > T ) o o
cients of the signature are then W = e T, =, D o
N-1
a(k) = 2 rie PTG g =0, N~ 1, ) Fig. 2. A selection of extracted auroral shapes [13]. While the
i=

arcs are most obvious shapes, there are many other irregular

wherej is the imaginary unit. The use of centroid provides aShapes in different orientations and sizes.
translation invariant representation. We can represergtiape
by first defining the Fourier Descriptors (FD) of the shape

a(k)

FD(k) = 20

. k=0...N—1, 3)

o e T e e m e e e s oo s e e e o m ow m = e w6 Do m m w —

and then using a subset of these FDs to provide a more compe
approximation of the shape:

f = [FD(2) FD(3) ... FD(M +1)], 4)

where M = 16 has experimentally been found to providea - - - - - - -« . <o v o oo oL Lol n
good approximation of the shape for comparison purposes. =~ = - * = =~ =~ * * P RS

Given two auroral shapes and their FD-representation,w @~ - >~ '~~~ "~~~ -~~~ oot
can measure their similarity by using the Euclidiandiseanc - - - <« . . v . . v oo oo v e e

dp (f1, £2) = || — f2,, (B) e e e e e

wheref; andf; correspond to the two different shapes being °
compared angdl- ||» denotes atlo-norm. We further assertthat - - - - . - - A
small distances correspond to more similar shapes. Sitgjlar == === === ==~ =~ - =~ ~ === == — == — -
of course, is a complex human concept, but for practicalpur ~ -~~~ -~ -~~~ -~~~ -~ ~--~ =~ =-- ===~
poses, this definition works surprisingly well. A selectioh - - - - - - - . - < o < e
shapes was organised by their mathematical representation
Fig. 3 illustrating how well this approach captures the appa
similarity.

We have implemented a content-based image retrieval sy: = ~ = =~ ==~~~ ==~ = ~ =~ ~ o e e e
tem based on the Fourier Descriptors. The system letstheus ~ =~ = "~ F v ikRrereardadess
choose an initial search shape, after which images which cor.
tain similar shapes are returned. The system currentlagunt
20,000 extracted shapes and can be experimented with at
http://aurora.phys.ucalgary.ca/cbir/.
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Fig. 3. Extracted shapes sorted by using their numerical
representation.
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Fig. 4. Top row to bottom row: auroral arcs, patchy auroras and Fig. 5. An overview of the BGLAM-based algorithm for texture
north-south structures. These all-sky images show northeatop classification.

and east on the right; the circular field-of-view captures whole ) ) ) .
sky. arity between texture images. The new distance functidas-sat

fies the important properties of non-negativity, symmedng

triangle inequality, and thus is metric. Furthermore, onigue

) property of the BGLAM-based distance function is that it is

3.1. Gray level aura matrices o one-to-one. Namely, a zero value of the distance measulre wil
Texture can be defined as a characteristic property of any,arantee that the two images are identical. Since thendista

object or image. In the case of aurora, the patterns thateappesnction is continuous, the one-to-one property implieat ih

in images share perceived similarities even if the mdmldu_ the distance of image Y from image X gradually changes (i.e.

shapes_ are not the same. Some of the commonly used term'%nverges) to zero, image Y will gradually get close (i.en-co

Iogy relies on texture: for example, patchy aurora _usualllgns verge) to X. For texture images, this one-to-one properargu

toirregular auroral “blobs” whose characteristic sizedBlob  gntees that the smaller the distance value, the more sithéar

distributions create a patchy appearance. two texture images are. A distance measure without the one-
Fig. 4 shows three auroral categories — arcs, patchy aurokg_one property cannot guarantee this.

and north-south aligned auroral features. While the elésnen
of arcs and north-south structures are similar, their ¢aigon

is different. Also their pattern is significantly differefrom Texture classification can be done using a BGLAM-based

patchy auroras. approach (Fig. 5). Given an unseen texture image, the apiproa
There are mathematical methods which can be used to e%pp (Fig. 5). Giv Y xure Image, op

i . b h h sh lassifies it into one of the pre-learned classes. Therenare t
tract information about the texture. As with shapes, a ®XIU a6 in the algorithm: a learning stage and a classifitatio
distance measure can be utilised to classify auroras based Qia4e | the first stage, models of texture classes areclbarn
f[helr general appearance in the images. One of these methogls,;, the BGLAMSs of training examples using the Support
is based on gray level aurora matrices (GLAM). . Vector Machine [14], and in the second stage, a given texture

As a generalisation of gray level co-occurrence matrix [2

; image is classified into one of the pre-learned classes, ichwh
15], gray level aura matrix [4] has been used as a powerfil togy, image has the largest signed distance
for texture analysis, synthesis, segmentation and cleasdn We used a small number of sample aII.-sk images imaaes
[5, 6, 7]. Among all the GLAMs, basic GLAMs (BGLAMs) are . ! P y Images ‘mag

; : X with varying contents: 401 arcs, 355 patchy auroras, 5nort
paruculayly important. In fact, E.’GLAMS area b{;15|s of GLAM_S south structures, 76 Omega-bands and 113 cloudy skiese Thes
and two images are the same if and only if their correspondin

fhages were used in training a classifier to recognise thgéma
BGLAMs are the same — for the proof, see [8]. In other words,ients. The accuracy of the classifier in the training set w
an image can be uniquely represented by and then falthfull¥ery good (over 90% correct classification).

reconstructed from its BGLAMSs. o . e
The classifier was then used in determining the class for all
Based on the above BGLAM theory, we can use a BGI-AM'auroraI images acquired during one night. In order to compar

based distance function for quantitatively measuring imés e cjassifications of these previously unseen images, see al

3. Aurora content as a texture

3.2. Auroral textures
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Fig. 6. One night of images as classified by the automatic Fig. 7. The same time-series of auroral images as in Fig. 6. This
method. For comparison, two manual classifications perdrm time, however, the automatic classifier could use the “Unkaio

by two auroral image experts are provided. The auroral image  auroral class.

were classified into “Cloudy”, “North-south structuresQfega-

bands”, “Patchy auroras” and “Arcs”. The automatic classifiad  are actually similar in a meaningful way. This is not as sobje

no option to choose the “Unknown” auroral class. ive as it sounds: the idea is thata truly successful aummle
classification technique would group images of aurora aause

provided manual classification for each image. The manudly some common underlying physical process close together

classification was performed by two auroral experts (Syiga  in the appropriate space. So, ideally, inverted-V arcs dibel

and Donovan) who examined each of the images in randorfi€ar other inverted-V arcs, polar cap patches near other pol

order to guarantee an independent auroral type for each in¢ap patches, etc.

age. Because the complexity of the image contents, thexper In particular, we have very strong motivations for carrying

utilised a special category (“unknown”) for images whose-co out this work. On the practical side, we are creating hursired

tents could not be classified unambiguously. of millions of auroral images and are in the very beginnings o

We performed two automatic classifications runs. In the firsgeveloping an auroral virtual observatory. We want to be abl
run, the classifier was forced to choose one auroral categorﬁ'( attach content descriptors to every image in our data set,
whereas the second run included an “unknown” category alstkely including that information in the overarching datase
in the automated classification. and meta data structures. This would greatly facilitatelist

The first run results are shown in Fig. 6. The overall agreeof auroral physics with these large cumbersome data sets. Th
ments with the two experts were 42% (“Manual 1”) and 34%being said, however, we have a much more important motiv-
(“Manual 2”). Not surprisingly, when including the unknown ation, namely to use these classification algorithms to belp
class in the automated classification, the results (FigieZha-  better understand the physics of the aurora and geospace dy-
ticeably better with 53% and 50% agreement. namics.

While there are differences between the classifier's and ex- For example, in this paper we have presented what is to our
perts’ classes, there are two important observationshglgx-  knowledge the first creation of time series of such classific-
perts agreed on the class in about 70% of the images and (2jions. This was done using texture analysis, applied to one
the experts chose the unknown class in almost 50% of all impight of data. If one examines Figs. 6 and 7, we see that there
ages. With those images that the experts did not classify d§ an evolution through the night as the aurora evolves from

unknown, the automatic method is much more accurate witfatchy, to arcs, then NS-structures and Omega-bands, @nd th
72% and 81% correct classification. to patchy again. Qualitatively this evolution is well known
the literature as a common diurnal variation, as evidensed a
) ) far back as in Akasofu’s early work (see eg., Fig. 1 of [11]
4. Discussion which is a modified version of an earlier figure from [1]). What
!':ﬁ new here is capturing this variation over the course opa ty
ical night quantitatively. Further, we can see hints thatghto-
auroralimages. The essence of our approach is a common feZ21ic algorithm is responding to transition between types i
pome meaningful way. In particular, the experts classifidg o

ture of all computer vision techniques: we use a training se fow | 0 band di ber 500. Th
and algorithms that map unclassifiedimagesintoahypeaspaca ewimages as Ymega bands around image number - 'he

The automatic algorithms classify images as similar if taey  2utomatic method classified images leading to that time also
close together. The effectiveness of the algorithm is asses as Omega bands. Our idea is that the classifier is seeing some

by whether or not images that are close together in that spa(%r?hec?sae'”ke features in the preceding images and responding

In this paper, we have presented some recent results fro
our efforts to develop automatic classification algorithiiors

(©2006 ICS-8 Canada
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The hope is that we will be able to create time series of
quantitative and — more importantly — physically meaning-

ful classifications of auroral images. In reality, the titios 13.

from arc, to NS-structures and Omega-bands, and ultimately
patchy aurora is a repeatable consequence of the typical sub

storm looked at through one all-sky imager. This transjtion 14.

then, reflects physics that we as a community are struggding t

understand. These time series of auroral classificationldho 15.

prove to be an excellent tool when used in an assimilative way
with global geospace models. For example, the above men-
tioned evolution reflects both the magnetospheric evatutio

the substorm and the changing magnetosphere-ionosphgre co
ling. These changesin the system, if properly understduild
allow us to predict the changesin the aurora. These qutviita
time series of image classification will be an essentialédgr

ent in testing the output of global models.
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