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Automatic classification of auroral images in
substorm studies

M. T. Syrj äsuo, E. F. Donovan, X. Qin, and Y.-H. Yang

Abstract: Millions of auroral images are captured every year by ground-based imagers. Even though the auroral
appearance or “type” yields relevant information about thephysical processes in the ionosphere and the magnetosphere,
qualitative descriptions of auroras are typically used. Modern methods including those widely used in computer vision
research can, however, make it possible to use objective andquantitative measures in analysing auroral appearance. Weare
currently developing techniques for automated auroral image analysis. In order to numerically compare auroral objects,
we can either describe individual auroral shapes — such as arcs — or use statistical appearance models (texture). We
demonstrate how one can use Fourier Descriptors to compare shapes extracted from auroral images. Also, using a recently
developed texture analysis technique, we show how texture measurements can be used in classifying auroral type in a
timeseries.
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1. Introduction

Imaging the aurora by using ground-based optical instru-
ments has long traditions in substorm research. The spectral,
temporal and spatial resolution have been increasing, and now
we are facing a problem of data: large imaging networks such
as MIRACLE [10] and NORSTAR [3] produce millions of all-
sky images annually. The situation will become worse with the
launch of Time History of Events and Macroscale Interactions
during Substorms (THEMIS) programme, which will produce
over 100 million images every year.

The traditional data analysis in substorm studies uses actual
measurements of physical properties (e.g. solar wind speed,
electron density). Also, derived quantities are commonly used
in order to understand the plasma processes in the magneto-
sphere and the ionosphere. Regardless of this quantitativein-
formation, the auroral image data are studied by using qualitat-
ive descriptors such as “bright auroral arcs” or “patchy aurora”.
Undoubtedly the “type” of the aurora yields relevant inform-
ation about the physics. More importantly, a self-consistent
global model should be able to predict this auroral type: other-
wise our understanding, upon which the model is based, is not
accurate.

Computer vision is a branch of computer science in which
techniques for automated image analysis and processing are
studied and developed. Automating the analysis makes it pos-
sible to browse through vast image sets, extract information
and learn and recognise patterns. In [11], we used automated
processing to obtain diurnal auroral occurrence statistics. While
the actual results were not new, the analysis was: the statistics
were based on 350,000 auroral images, from which an auto-
mated routine extracted information about whether an image
contained aurora and if so what was its type. The type of au-
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rora was learned from 258 manually labelled example images,
after which the computer could provide a classification to all
remaining images.

While we chose to use a three distinct auroral types (arcs,
patchy aurora and Omega-bands) in [11], there is, of course,
more variation in auroral types. In fact, the automatic classifier
could only provide a clear category for 12% of the images that
contained auroras. Also, the detection of Omega-bands was
quite inaccurate, possibly because contrary to arcs and patchy
auroras, we had a small number of examples for training the
classifier.

There clearly is a need for more accurate mathematical treat-
ment of auroral image contents. We can use example images
for training a classifier to recognise certain types of auroras,
but obviously learning the type categories from actual data
would provide more objective type definitions. In the rest of
this paper, we concentrate on describing the shape of an au-
roral object by using mathematical methods and demonstrate
the use of texture measures for classication of auroral images.

2. Shape analysis

Extracting shapes is one of the most intensively studied prob-
lems in computer vision. Of course, there is no algorithm that
works well for all applications. For our purposes, we have used
a modified version of the isolabel-contour map algorithm from
medical imaging [9]. The algorithm consists of four steps: 1)
extract contours; 2) detect strongest edges; 3) score individual
contours based on their overlap on edges; 4) choose non-over-
lapping contours with the highest scores. An example of de-
tected auroral shapes can be seen in Fig. 1 and selection of
extracted shapes is shown in Fig. 2. Details and practical ap-
plications of this algorithm can be found in [12, 13].

Once an auroral object is outlined, we can form a mathem-
atical expression for the shape. Letxi andyi be the pixel co-
ordinatesi = 1, . . . , N on the outline. Now, we can define a
centroid shape signature

ri =
√

(xi − xc)2 + (yi − yc)2, (1)
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Fig. 1. Two salient auroral objects detected and outlined by the
shape extraction algorithm.

where (xc,yc) is the centroid of the shape. The Fourier coeffi-
cients of the signature are then

a(k) =

N−1
∑

i=0

rie
−j2π(k−1)(i−1)/N , k = 0 . . .N − 1, (2)

wherej is the imaginary unit. The use of centroid provides a
translation invariant representation. We can represent the shape
by first defining the Fourier Descriptors (FD) of the shape

FD(k) =

∣

∣
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a(k)

a(0)

∣
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∣

, k = 0 . . .N − 1, (3)

and then using a subset of these FDs to provide a more compact
approximation of the shape:

f = [FD(2) FD(3) . . . FD(M + 1)] , (4)

whereM = 16 has experimentally been found to provide a
good approximation of the shape for comparison purposes.

Given two auroral shapes and their FD-representation, we
can measure their similarity by using the Euclidian distance:

dFD(f1, f2) = ||f1 − f2||2, (5)

wheref1 andf2 correspond to the two different shapes being
compared and||·||2 denotes anL2-norm. We further assert that
small distances correspond to more similar shapes. Similarity,
of course, is a complex human concept, but for practical pur-
poses, this definition works surprisingly well. A selectionof
shapes was organised by their mathematical representationin
Fig. 3 illustrating how well this approach captures the apparent
similarity.

We have implemented a content-based image retrieval sys-
tem based on the Fourier Descriptors. The system lets the user
choose an initial search shape, after which images which con-
tain similar shapes are returned. The system currently contains
20,000 extracted shapes and can be experimented with at
http://aurora.phys.ucalgary.ca/cbir/.

Fig. 2. A selection of extracted auroral shapes [13]. While the
arcs are most obvious shapes, there are many other irregular
shapes in different orientations and sizes.

Fig. 3. Extracted shapes sorted by using their numerical
representation.
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Fig. 4. Top row to bottom row: auroral arcs, patchy auroras and
north-south structures. These all-sky images show north atthe top
and east on the right; the circular field-of-view captures the whole
sky.

3. Aurora content as a texture

3.1. Gray level aura matrices
Texture can be defined as a characteristic property of any

object or image. In the case of aurora, the patterns that appear
in images share perceived similarities even if the individual
shapes are not the same. Some of the commonly used termino-
logy relies on texture: for example, patchy aurora usually refers
to irregular auroral “blobs” whose characteristic sizes and blob
distributions create a patchy appearance.

Fig. 4 shows three auroral categories — arcs, patchy aurora
and north-south aligned auroral features. While the elements
of arcs and north-south structures are similar, their orientation
is different. Also their pattern is significantly differentfrom
patchy auroras.

There are mathematical methods which can be used to ex-
tract information about the texture. As with shapes, a texture
distance measure can be utilised to classify auroras based on
their general appearance in the images. One of these methods
is based on gray level aurora matrices (GLAM).

As a generalisation of gray level co-occurrence matrix [2,
15], gray level aura matrix [4] has been used as a powerful tool
for texture analysis, synthesis, segmentation and classification
[5, 6, 7]. Among all the GLAMs, basic GLAMs (BGLAMs) are
particularly important. In fact, BGLAMs are a basis of GLAMs
and two images are the same if and only if their corresponding
BGLAMs are the same — for the proof, see [8]. In other words,
an image can be uniquely represented by and then faithfully
reconstructed from its BGLAMs.

Based on the above BGLAM theory, we can use a BGLAM-
based distance function for quantitatively measuring the simil-
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Fig. 5. An overview of the BGLAM-based algorithm for texture
classification.

arity between texture images. The new distance function satis-
fies the important properties of non-negativity, symmetry,and
triangle inequality, and thus is metric. Furthermore, one unique
property of the BGLAM-based distance function is that it is
one-to-one. Namely, a zero value of the distance measure will
guarantee that the two images are identical. Since the distance
function is continuous, the one-to-one property implies that if
the distance of image Y from image X gradually changes (i.e.
converges) to zero, image Y will gradually get close (i.e. con-
verge) to X. For texture images, this one-to-one property guar-
antees that the smaller the distance value, the more similarthe
two texture images are. A distance measure without the one-
to-one property cannot guarantee this.

3.2. Auroral textures
Texture classification can be done using a BGLAM-based

approach (Fig. 5). Given an unseen texture image, the approach
classifies it into one of the pre-learned classes. There are two
states in the algorithm: a learning stage and a classification
stage. In the first stage, models of texture classes are learned
from the BGLAMs of training examples using the Support
Vector Machine [14], and in the second stage, a given texture
image is classified into one of the pre-learned classes, to which
the image has the largest signed distance.

We used a small number of sample all-sky images images
with varying contents: 401 arcs, 355 patchy auroras, 52 north-
south structures, 76 Omega-bands and 113 cloudy skies. These
images were used in training a classifier to recognise the image
contents. The accuracy of the classifier in the training set was
very good (over 90% correct classification).

The classifier was then used in determining the class for all
auroral images acquired during one night. In order to compare
the classifications of these previously unseen images, we also
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Fig. 6. One night of images as classified by the automatic
method. For comparison, two manual classifications performed
by two auroral image experts are provided. The auroral images
were classified into “Cloudy”, “North-south structures”, “Omega-
bands”, “Patchy auroras” and “Arcs”. The automatic classifier had
no option to choose the “Unknown” auroral class.

provided manual classification for each image. The manual
classification was performed by two auroral experts (Syrjäsuo
and Donovan) who examined each of the images in random
order to guarantee an independent auroral type for each im-
age. Because the complexity of the image contents, the experts
utilised a special category (“unknown”) for images whose con-
tents could not be classified unambiguously.

We performed two automatic classifications runs. In the first
run, the classifier was forced to choose one auroral category,
whereas the second run included an “unknown” category also
in the automated classification.

The first run results are shown in Fig. 6. The overall agree-
ments with the two experts were 42% (“Manual 1”) and 34%
(“Manual 2”). Not surprisingly, when including the unknown
class in the automated classification, the results (Fig. 7) are no-
ticeably better with 53% and 50% agreement.

While there are differences between the classifier’s and ex-
perts’ classes, there are two important observations: (1) the ex-
perts agreed on the class in about 70% of the images and (2)
the experts chose the unknown class in almost 50% of all im-
ages. With those images that the experts did not classify as
unknown, the automatic method is much more accurate with
72% and 81% correct classification.

4. Discussion

In this paper, we have presented some recent results from
our efforts to develop automatic classification algorithmsfor
auroral images. The essence of our approach is a common fea-
ture of all computer vision techniques: we use a training set
and algorithms that map unclassified images into a hyperspace.
The automatic algorithms classify images as similar if theyare
close together. The effectiveness of the algorithm is assessed
by whether or not images that are close together in that space
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Fig. 7. The same time-series of auroral images as in Fig. 6. This
time, however, the automatic classifier could use the “Unknown”
auroral class.

are actually similar in a meaningful way. This is not as subject-
ive as it sounds: the idea is that a truly successful auroral image
classification technique would group images of aurora caused
by some common underlying physical process close together
in the appropriate space. So, ideally, inverted-V arcs would be
near other inverted-V arcs, polar cap patches near other polar
cap patches, etc.

In particular, we have very strong motivations for carrying
out this work. On the practical side, we are creating hundreds
of millions of auroral images and are in the very beginnings of
developing an auroral virtual observatory. We want to be able
to attach content descriptors to every image in our data set,
likely including that information in the overarching data base
and meta data structures. This would greatly facilitate studies
of auroral physics with these large cumbersome data sets. That
being said, however, we have a much more important motiv-
ation, namely to use these classification algorithms to helpus
better understand the physics of the aurora and geospace dy-
namics.

For example, in this paper we have presented what is to our
knowledge the first creation of time series of such classific-
ations. This was done using texture analysis, applied to one
night of data. If one examines Figs. 6 and 7, we see that there
is an evolution through the night as the aurora evolves from
patchy, to arcs, then NS-structures and Omega-bands, and then
to patchy again. Qualitatively this evolution is well knownin
the literature as a common diurnal variation, as evidenced as
far back as in Akasofu’s early work (see eg., Fig. 1 of [11]
which is a modified version of an earlier figure from [1]). What
is new here is capturing this variation over the course of a typ-
ical night quantitatively. Further, we can see hints that the auto-
matic algorithm is responding to transition between types in
some meaningful way. In particular, the experts classified only
a few images as Omega bands around image number 500. The
automatic method classified images leading to that time also
as Omega bands. Our idea is that the classifier is seeing some
Omega-like features in the preceding images and responding
to those.
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The hope is that we will be able to create time series of
quantitative and — more importantly — physically meaning-
ful classifications of auroral images. In reality, the transition
from arc, to NS-structures and Omega-bands, and ultimately
patchy aurora is a repeatable consequence of the typical sub-
storm looked at through one all-sky imager. This transition,
then, reflects physics that we as a community are struggling to
understand. These time series of auroral classification should
prove to be an excellent tool when used in an assimilative way
with global geospace models. For example, the above men-
tioned evolution reflects both the magnetospheric evolution in
the substorm and the changing magnetosphere-ionospherecoup-
ling. These changes in the system, if properly understood, should
allow us to predict the changes in the aurora. These quantitative
time series of image classification will be an essential ingredi-
ent in testing the output of global models.
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